Local geometry of a weak normal shock wave interacting with turbulence

A. Kusuhata, K. Tanaka, T. Watanabe, K. Nagata, A. Sasoh 
Local geometry of a weak normal shock wave interacting with turbulence 
Physics of Fluids, 35 086110 2023

Accepted manuscript is available here
This version is free to view and download for private research and study only. 

This article may be found at https://doi.org/10.1063/5.0158309.

Abstract

The shock surface geometry is investigated with direct numerical simulations of a weak normal shock wave propagating in turbulence. The geometry is quantified with the principal curvatures of the surface. A large part of the surface has an approximately flat saddle shape, while elliptic concave and convex shapes with a large curvature intermittently appear on the shock surface. The pressure–dilatation correlation in the governing equation of pressure is investigated at the shock wave with the decomposition into three terms associated with the velocity gradients in the two directions of the principal curvatures and the normal direction of the shock wave. Fluid expansion in the tangential direction occurs at the shock wave with a convex shape in the direction of the shock propagation, resulting in a smaller pressure jump across the shock wave. For a concave shape, compression in the tangential direction can amplify the pressure jump. Consistently, small and large shock Mach numbers are observed for convex and concave shapes, respectively. The geometric influences are the most significant for elliptic concave and convex shapes with approximately equal curvatures in the two principal directions because the compression or expansion occurs in all tangential directions. These relations between the shock surface geometry and shock Mach number observed in turbulence are consistent with the theory of deformed shock waves, suggesting that the three-dimensional geometrical features of the shock surface are important in the modulation of shock waves due to turbulence.

日本語訳 (DeepL翻訳)

乱流と相互作用する弱い衝撃波の局所形状 

乱流中を伝播する弱い法線衝撃波の直接数値シミュレーションにより衝撃面の形状を調べた。その形状は表面の主曲率で定量化される。衝撃波表面の大部分はほぼ平坦な鞍型形状であるが、衝撃波表面には大きな曲率を持つ楕円凹凸形状が断続的に現れる。衝撃波における圧力の支配方程式における圧力-膨張相関を、衝撃波の主曲率と法線方向の2方向の速度勾配に関連する3つの項に分解して調べた。衝撃波が衝撃波の伝播方向に凸の形状をしている場合、接線方向の流体膨張が起こり、衝撃波を横切る圧力ジャンプが小さくなる。凹形状の場合、接線方向の圧縮により圧力ジャンプが増幅される。一貫して、衝撃マッハ数は凸型と凹型でそれぞれ小さく、大きく観察される。幾何学的な影響は、圧縮または膨張がすべての接線方向で起こるため、2つの主方向の曲率がほぼ等しい楕円凹凸形状で最も大きくなる。乱流中で観測された衝撃面の形状と衝撃マッハ数のこれらの関係は、変形衝撃波の理論と一致しており、衝撃面の3次元的な形状的特徴が乱流による衝撃波の変調に重要であることを示唆している。

GD